

KLINGER®top-chem 2000 - the universal heavy-duty gasket filled with silicon carbide with Fire Safe certificate.

The only PTFE gasket worldwide to have been awarded a Fire Safe certificate, KLINGER®top-chem 2000 is a universal heavy-duty gasket filled with silicon carbide. Continuously providing best performance in applications with high mechanical requirements at high temperatures, this gasket material features excellent acidic and alkaline resistance and versatility in steam versatility in steam applications. It is primarily used in the chemical, the petrochemical and the maritime industry.

Basis composition	PTFE gasket filled with SiC (Silicon carbide)				
Color	Grey				
Certificates	DIN-DVGW, DIN-DVGW W 270, KTW-Guideline, WRAS approval, Oxygen-tested, TA-Luft (Clean air)				

KTW-Guideline, WRAS approval, Oxygen-tested, TA-Luft (Clean air), Fire-Safe acc. to DIN EN ISO 10497, FDA compliant (PTFE), Regulation (EU) No. 1935/2004 (incl. 10/2011), DNV GL approval

Sheet size 1500 x 1500 mm

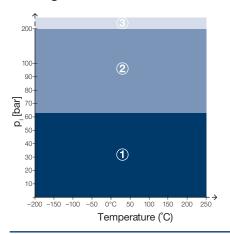
Thickness 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm

Tolerances

Thickness according to DIN 28091-1

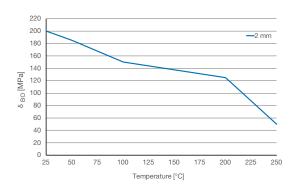
Length: \pm 50 mm Width: \pm 50 mm

Industry


General industry / Chemical / Oil & Gas / Energy / Infrastructure / Pulp & Paper / Marine / Automotive / Food & Beverage / Pharma

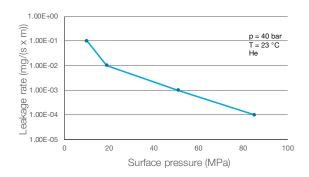
TECHNICAL DATA - Typical values for a thickness of 2.0 mm

Compressibility	ASTM F 36 M	%	4
Recovery	ASTM F 36 M	%	50
Stress relaxation DIN 52913	30 MPa, 16 h/150°C	MPa	28
	50 MPa, 16 h/260°C	MPa	36
KLINGER cold/hot compression	thickness decrease at 23°C	%	5
50 MPa	thickness decrease at 260°C	%	11
Tightness	DIN 28090-2	mg/(s x m)	0.08
Specific leakrate	VDI 2440	mbar x l/(s x m)	4.46E-06
Thickness/weight increase	H ₂ SO ₄ , 100%: 18 h/23°C	%	1/1
	HNO ₃ , 100%: 18 h/23°C	%	1/2
	NaOH, 33%: 72 h/110°C	%	1/3
Density		g/cm³	2.5
Average surface resistance	ρΟ	Ω	6.9x10E12
Average specific volume resistance	ρD	Ωcm	2.2x10E12
Average dielectric strength	Ed	kV/mm	3.6
Average power factor	50 Hz	tan δ	0.166
Average dielectric coefficient	50 Hz	εr	10.6
Thermal conductivity	λ	W/mK	0.60
ASME-Code sealing factors			
for gasket thickness 2.0 mm	tightness class 0.1mg/s x m	MPa	y 15
			m 3.2


P-T diagram - thickness 2.0 mm

The area of the P-T diagram

- 1 In area one, the gasket material is normally suitable subject to chemical compatibility.
- 2 In area two, the gasket material may be suitable but a technical evaluation is recommended.
- 3 In area three, do not install the gasket without a technical evaluation.
 - Always refer to the chemical resistance of the gasket to the media.


Sigma BO

Maximum surface pressure in operating conditions of Sigma BO

This diagram shows the maximum surface pressure in MPa with which the sealing material may be loaded, depending on the operating temperature. The characteristic curves apply to the specified sealing thicknesses. In contrast to Qsmax according to EN 13555, the surface pressures specified here are based on a maximum permissible reduction in thickness.

Tightness performance

The tightness performance graph

The graph shows the required stress at assembling to seal a certain tightness class. The determination of the graph is based on EN13555 test procedure which applies 40bar Helium at room temperature. The sloping curve indicates the ability of the gasket to increase tightness with raising gasket stress.

Chemical resistance chart

Simplified overview of the chemical resistance depending on the most important groups of raw materials:

KLINGER®top-chem 2000					A: small or no attack		B: weak till moderate attack		ack	C: strong attack	
Paraffinic hydrocarbon	Motor fuel	Aromates	Chlorinated hydrocarbon fluids	Motor oil	Mineral lubricants	Alcohol	Ketone	Ester	Water	Acid (diluted)	Base (diluted)
Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α

For more information on chemical resistance please visit www.klinger.co.at.

All information is based on years of experience in production and operation of sealing elements. However, in view of the wide variety of possible installation and operating conditions one cannot draw final conclusions in all application cases regarding the behaviour in gasket joint. The data may not, therefore, be used to support any warranty claims. This edition cancels all previous issues. Subject to change without notice.

